Iron homeostasis in plants – a brief overview
نویسندگان
چکیده
Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.
منابع مشابه
Iron economy in Chlamydomonas reinhardtii
While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast...
متن کاملThe power plant of the cell is also a smithy: the emerging role of mitochondria in cellular iron homeostasis.
Iron is required for a barrage of essential biochemical functions in virtually every species of life. Perturbation of the availability or utilization of iron in these functions or disruption of other components along iron-requiring pathways can not only lead to cellular/organismal insufficiency of respective biochemical end-products but also result in a broad derangement of iron homeostasis. Th...
متن کاملIron metabolism: from health to disease.
BACKGROUND Iron is vital for almost all living organisms by participating in a wide range of metabolic processes. However, iron concentration in body tissues must be tightly regulated since excessive iron may lead to microbial infections or cause tissue damage. Disorders of iron metabolism are among the most common human diseases and cover several conditions with varied clinical manifestations....
متن کاملIron homeostasis and iron acquisition in plants: maintenance, functions and consequences.
Iron (Fe) is fourth most abundant element in the earth’s crust and is an essential nutrient for almost all organisms. Its solubility and availability are very changeable depending on soil pH and Eh and as a result, iron can be deficient under alkaline and oxidative conditions, whereas it can be present in excess under acidic and submerged conditions: both situations can generate serious nutriti...
متن کاملIron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1
We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017